writes copy 11 Oct 2017

3D Printing Medical Devices and RD Tax Credits

Sponsored Content

3D printers are now being used to develop the next generation of life-changing medical devices. Due to technological innovation in this field, it's now possible to print medical devices that feature complex geometries, which allows devices to be customized to meet an individual's needs. The unique capabilities of 3D printing also support the integration of new technologies, as printed devices are able to outperform medical devices fabricated using conventional methodologies. Over the next four years the global 3D printing healthcare market is expected to grow 26.2%, compounded annually, totaling $2.3 billion by 2020. Firms that are engaged in developing medical devices or refining 3D printing technologies for the biomedical industry are eligible for the Research and Development Tax Credit and should apply for the credit to offset their R&D costs.

The Research & Development Tax Credit

Companies in various industries, including firms that utilize 3D printing technologies have been taking advantage of the federal Research and Development (R&D) Tax Credit since 1981. Firms can receive a credit of up to 13 percent of eligible spending for new and improved products and processes. Qualified research must meet the following four criteria:

  • New or improved products, processes, or software
  • Technological in nature
  • Elimination of uncertainty
  • Process of experimentation

Eligible costs include employee wages, cost of supplies, cost of testing, contract research expenses, and costs associated with developing a patent. On December 18, 2015, President Obama signed the bill making the R&D Tax Credit permanent. Beginning in 2016, the R&D credit can be used to offset Alternative Minimum Tax and startup businesses can utilize the credit against $250,000 per year in payroll taxes.

Advantages of 3D Printing Medical Devices

Metal- and ceramic-based implants have been used for decades, but the manufacturing techniques necessary to make them have major limitations that hinder the overall efficacy of the medical device. Conventional fabrication techniques used to make medical devices include machining, casting, and forging. When using these techniques there are two options: make a custom-made piece for a patient, which is an extremely costly process due to there being no economies of scale, or make larger quantities of implants but in generic sizes, which won't fit the patient perfectly.

The reason that 3D printing has become a game changer in the medical device industry is because it allows for the development of medical devices that are more personalized to the wearer while proving less expensive to create. Conventional biocompatible materials used in the construction of medical implants include composites, titanium, stainless steel, cobalt, chromium, and other metals. Advances in 3D printing, especially metal printing, have hinted that development of next-generation medical devices and implants will outperform anything that has come before them. By using extremely accurate renderings of digital 3D files, such as computer-aided design (CAD) drawings or a Magnetic Resonance Image (MRI), 3D printers can produce a device with more natural anatomical geometries that make it possible to customize the device for the individual. Similarly, 3D printing can also be used in the development of porous bone replacement scaffolds that can be integrated into an implant design. The integration of bone replacement scaffolds helps facilitate natural bone ingrowth, which increases the stability of the implant over time.

Design Factors

3D printing medical devices has proven to be a balancing act. Although designers have the ability to print implants in any geometry they want, it is necessary to ensure that the physical properties of the selected material can handle the structure of those unique geometries. For example, when integrating porous bone replacement scaffolds, it is critical for designers to not make the device too porous where its structural integrity can weaken and consequently fail from normal, shear, and bearing stresses. The development of geometrically complex and porous medical devices will also present cleaning challenges. It is imperative that medical devices are thoroughly cleaned to ensure that foreign bodies do not infect the patient during surgery. In the future, medical device designers will have to weigh the benefits of complex designs against the difficulty to effectively clean the device. Another factor that needs to be considered during the design process is the feasibility of utilizing multiple manufacturing techniques to develop the medical device. This might require keeping extra stock material on the device so that it can be machined at a later point in time.

3D printing will certainly improve the quality of medical devices, but there still exist challenges associated with using this technology. The biggest advantage of 3D printing medical devices is the ability to customize a device to meet a patient's needs; however this is also one of the biggest hurdles in standardizing the manufacturing process. When a company fabricates a medical device, it is required that standards be put in place to confirm that the device is safe for patients.

When it comes to medical devices, biocompatibility is a primary concern that needs to be addressed. Firms that are developing medical devices will have to conduct more extensive experimental testing on other products if biocompatibility information is not available for a particular material. There are many initiatives underway, such as the Biocompatibility Consortium for Additive Manufacturing which seeks to identify the biocompatibility of materials.

3D Printed Pacemakers

Advances in biomedical engineering are propelling devices such as pacemakers to be 3D printed. Pacemakers help people with irregular heartbeats monitor and control their heart rate. An electrode is used to detect the electrical activity of the heart, which then sends data through wires to the computer in the generator. Once that data is processed, the generator will send electrical impulses to the heart, in turn correcting the us

Read the Original Article