writes copy 26 Oct 2017

3D Printing Spotlight On: Laura Gilmour Global Medical Business Development Manager EOS North America

Sponsored Content

3D printing and healthcare are coming together in unprecedented ways as advanced manufacturing technologies allow for patient-specific medical treatment to the benefit of patient, medical provider — and of course the businesses providing the technology. Germany-based EOS is well known as a provider of high-quality 3D printing solutions including industrial machines set to take on applications from bicycle parts to fine jewelry, as well as customized medical implants for human and animal alike. Companies around the world are demonstrating a commitment to EOS technologies through major investments in the machines as the company’s expanding offerings highlight versatile materials and a company-backed vision for strength in additive manufacturing. The company’s operations are expanding as well as EOS targets North America as a major growth market.

As ever, the road to success in business is reliant upon the team at work, and EOS North America has been making every effort to bring in great minds. We’ve been keeping up with EOS North America as the busy and well-credentialed team have been working at the fore of EOS’ efforts on this continent. Many of these efforts target the medical market, which offers major opportunity for the business.

Laura Gilmour,  Global Medical Business Development Manager, brings a strong background in high-tech medical fields and experience in engineering and regulation to her work at EOS North America. We’ll be hearing more from her in our upcoming Additive Manufacturing Strategies summit hosted with  SmarTech Markets Publishing, as we continue to delve into the intricacies of business and investment opportunities impacted by additive manufacturing. She has also been kind enough to share her story with us today as we continue to feature the dedicated work of leading women working in 3D printing today and hear about more opportunities for women to lead discussions on technology and healthcare. In this exclusive interview, Gilmour shares her thoughts on additive manufacturing for serial production of medical devices, getting into the 3D printing industry, role models, and regulation.

An EOS 3D printer in action at RAPID + TCT 2017 [Photo: Sarah Goehrke]

What inspired you to work in this field?

“My interest in this field is tied to the reason behind why I studied biomedical engineering. My goal is to enable healthcare professionals to create a better quality of life for their patients and move the practice of medicine forward using the principles of biomedical engineering. I find additive manufacturing particularly interesting for healthcare because of its ability to provide more cost effective customized solutions.

I first encountered 3D printing when I was working for Smith and Nephew Orthopedics. Interacting with the technology demonstrated the new frontiers that designing for additive manufacturing could bring medical devices. The opportunity additive manufacturing has to advance industries is immense and working with customers at EOS excites me because together, we work to unlock the potential additive manufacturing has for the medical industry.”

What do you think is the greatest potential for additive manufacturing in the medical industry?

“Though orthopedics was an early adopter of the technology, it's still very new and the technology is doing more and more for patients and surgeons alike. The greatest potential it has from my perspective is making patient-specific implants and other ‘custom serial production’ applications — that's where the technology really does shine.

Different patient populations around the world require different parameters for surgical equipment and medical implants. With additive manufacturing, computer-aided designs that are patient-specific can come to life. One exciting application I know of happened when a professional rock climber experienced a complex fracture in his ankle that couldn't be repaired. Through medical scans, an exact replica of the climber's ankle was reconstructed in a program that communicated a specific design to the AM machine. AM technology was able to create a part that closely matched his anatomy and once implanted, the climber's recovery was quick because he had a more specific joint replacement rather than an ankle fusion or trauma plates which may not have allowed him to return to climbing. This story reminds me that at the end of the day, it's a patent's quality of life we have a chance to impact by enabling the medical community.

Beyond patient specificity, AM makes reaching greater complexity in surgical equipment design achievable. For instance, robotic surgery is incredibly complex and some applications have been overlooked because equipment designs were not achievable due to limitations of traditional manufacturing. Moreover, robotic surgery helps surgeons do routine procedures the same way every time and addit

Read the Original Article